Synergy against PML-RARa: targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia

نویسندگان

  • Guilherme Augusto dos Santos
  • Lev Kats
  • Pier Paolo Pandolfi
چکیده

Acute promyelocytic leukemia (APL) is a hematological malignancy driven by a chimeric oncoprotein containing the C terminus of the retinoic acid receptor-a (RARa) fused to an N-terminal partner, most commonly promyelocytic leukemia protein (PML). Mechanistically, PML-RARa acts as a transcriptional repressor of RARa and non-RARa target genes and antagonizes the formation and function of PML nuclear bodies that regulate numerous signaling pathways. The empirical discoveries that PML-RARa-associated APL is sensitive to both all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO), and the subsequent understanding of the mechanisms of action of these drugs, have led to efforts to understand the contribution of molecular events to APL cell differentiation, leukemia-initiating cell (LIC) clearance, and disease eradication in vitro and in vivo. Critically, the mechanistic insights gleaned from these studies have resulted not only in a better understanding of APL itself, but also carry valuable lessons for other malignancies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The DNA Binding Property of PML/RARA but Not the Integrity of PML Nuclear Bodies Is Indispensable for Leukemic Transformation

PML/RARA is the oncoprotein driving acute promyelocytic leukemia (APL). It suppresses genes expression by recruitment of a number of transcriptional repressors, resulting in differentiation block and malignant transformation of hematopoietic cells. Here, we found that mice primary hematopoietic progenitor cells (HPCs), transduced by DNA-binding-defective PML/RARA mutants, were deficient in colo...

متن کامل

Uncoupling RARA transcriptional activation and degradation clarifies the bases for APL response to therapies

In PML/RARA-driven acute promyelocytic leukemia (APL), retinoic acid (RA) induces leukemia cell differentiation and transiently clears the disease. Molecularly, RA activates PML/RARA-dependent transcription and also initiates its proteasome-mediated degradation. In contrast, arsenic, the other potent anti-APL therapy, only induces PML/RARA degradation by specifically targeting its PML moiety. T...

متن کامل

Cytogenetic and FMS-Like Tyrosine Kinase 3 Mutation Analyses in Acute Promyelocytic Leukemia Patients

Background: The secondary genetic changes other than the promyelocytic leukemia-retinoic acid receptor (PML-RARA) fusion gene may contribute to the acute promyelocytic leukemogenesis. Chromosomal alterations and mutation of FLT3 (FMS-like tyrosine kinase 3) tyrosine kinase receptor are the frequent genetic alterations in acute myeloid leukemia. However, the prognostic significance of FLT3 mutat...

متن کامل

Revisiting the differentiation paradigm in acute promyelocytic leukemia.

As the result of intense clinical and basic research, acute promyelocytic leukemia (APL) has progressively evolved from a deadly to a curable disease. Historically, efforts aimed at understanding the molecular bases for therapy response have repeatedly illuminated APL pathogenesis. The classic model attributes this therapeutic success to the transcriptional reactivation elicited by retinoic aci...

متن کامل

Therapy-induced PML/RARA proteolysis and acute promyelocytic leukemia cure.

Acute promyelocytic leukemia (APL) is characterized by a specific t(15;17) chromosomal translocation that yields the PML/RARA fusion gene. Clinically, besides chemotherapy, two drugs induce clinical remissions: retinoic acid (RA) and arsenic trioxide (As). Both agents directly target PML/RARA-mediated transcriptional repression and protein stability, inducing to various extent promyelocyte diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 210  شماره 

صفحات  -

تاریخ انتشار 2013